
Code Obfuscation with LLVM

Matus Mrekaj

24 May 2023

Surreptitious software and why is it useful.
Concentrating on implementing various trans-
formation passes in LLVM for code obfusca-
tion making static analysis of a binary harder
but not unfeasible.

1 Computer Security

When we talk about computer security, we most of-
ten talk about how to secure our data and commu-
nications from being read by a malicious actor. This
could be achieved by having a secret key shared be-
tween two parties that the third party does not know,
this branch of security is known as cryptography.
Computer security is a vast topic in itself and has

many branches that focus on different areas. While
cryptography addresses the problem of secure com-
munication and encryption of data, it is based on
the fundamental assumption that the secret key is
securely stored.
Consider this scenario, you have a software prod-

uct packaged in a binary and you decide to distribute
it to your customers who paid for it. These binaries
may contain secrets that you don’t want anyone else
to have except the customer who paid for your prod-
uct. These secrets may be keys, unique identification
numbers or anything that you consider confidential.
These secrets that are distributed with the binary are
then used when communicating with you.
What happens when a 3rd party gets hold of one or

more of the binaries and decide to re-distribute them,
perhaps with a cheaper price, some changes to the
features etc. The malicious actor can do whatever he
wants as there is no limit as to what can and can’t be
done when he gets hold of the binary. This is where

Surreptitious software can be useful.

1.1 Surreptitious software

Surreptitious software is a term that describes a
branch of computer security that works with tech-
niques from many branches of computer security,
namely cryptography, watermarking, reverse engi-
neering, steganography and compilers [1].

You may be wondering how we could have avoided
the scenario just described using these techniques.
Watermarking could be used to track illegal copies,
tamperproofing could be used to prevent tampering
with the binary, obfuscation could be used to protect
algorithms.

As with cryptography, where the secret keys used
have different lifetimes and will not prevent a third
party from reading the data forever, Surreptitious
Software does not guarantee that these techniques
will work forever or be unbroken. The goal is to slow
down the malicious actor so that breaking these al-
gorithms takes more time than they are willing to
invest and potentially give up [1].

You may be asking yourself why would you want to
store secrets in your binary that could be exploited.
There is no judgement to this question, whatever the
case is its good to know what can be used to improve
the security when such a use cases arises.

1.1.1 Examples of Surreptitious software

A quick glance at the following website
https://patents.google.com/ with keywords, wa-
termarking, obfuscation, tamperproofing etc... will
tell us which companies use Surreptitious software.
For example, Microsoft Inc. owns several patents

1

related to obfuscation, watermarking [10], Apple Inc.
owns patents on obfuscation [3], and there are many
more such examples.

These are only those that are public publicly ac-
cessbile, The use-cases for Surreptitious software can
range from simply preventing Games from being
cracked to protecting Military equipment [1].

2 Code Obfuscation

In this paper, the focus was only on part of Surrepti-
tious software for making static analysis of a program
harder, namely code obfuscation. Several obfuscation
methods were implemented as LLVM 1 transforma-
tion passes.

The obfuscation passes work on the IR level in
LLVM, this allows for the transformations to be lan-
guage independent. Any language that has an im-
plementation for the LLVM frontend namely Ada, C,
C++, D, Delphi, Fortran, Haskell, Julia, Objective-
C, Rust, and Swift should theoretically work with
the transformation passes, it may be the case that
some of these languages use LLVM constructs which
weren’t considered when implementing the passes
and thus may break. The passes were tested with
C, C++.

Further, we also achieve platform independence as
the modified IR code can then be passed to the LLVM
backends, such as x86, PowerPC, ARM, and SPARC,
to then generate code for the given type of CPU [9].

2.1 Related work

There are many commercial available code obfusca-
tors, such as Tigress, that support various languages.
From the open-source scene the more known one is
ollvm which is described in [11], Since it ended with
LLVM version 4.0 other projects started, [6, 7, 12]
that were build upon the codebase and added new
transformation passes.

1LLVM is a set of compiler and toolchain technologies
https://llvm.org/

2.2 My Contribution

The aim was to implement common obfuscation
methods, with some modifications, which are de-
scribed in [2]. The LLVM passes were implemented
for LLVM v15.0.7, which was the stable version at
the time of start of the implementation.

The following methods were implemented

1. Basic Block Extraction

2. Operation Substitution

3. Strings Obfuscation

4. Opaque Predicates

5. Function Merging

6. Introduce Jump into Loop

7. Control Flow Flattening

8. Integer Literals Obfuscation

9. Function Call Obfuscation

10. Branch Function Obfuscation

11. Bogus Control Flow

3 Transformation Passes

3.1 Basic Block Extraction

Basic Block extraction is a very simple transforma-
tion pass that given a basic block in a function it
extracts that basic block into a new function, a call
instruction to the new function is then inserted in-
place of the basic block. The changes are illustrated
by Figure 1 on the top of the following page.

By itself the block extraction doesn’t add much
confusion to the control flow graph, if however com-
bined with other transformation passes, which fur-
ther obfuscate the newly created function for the ex-
tracted block, it can result in strong control flow ob-
fuscation.

3.2 Operation Substitution

Operation substitution is another simple transforma-
tion pass that substitutes an instruction into a se-
quence of instructions which ultimately end up with
the same result.

2

CFG for 'update' function

%2:
 %3 = icmp eq float* %0, null
 %4 = icmp eq float* %1, null
 %5 = select i1 %3, i1 true, i1 %4
 br i1 %5, label %15, label %6

T F

%15:
15:
 %16 = phi i32 [0, %6], [2, %2]
 ret i32 %16

%6:
6:
 %7 = load float, float* %0, align 4, !tbaa !10
 %8 = fpext float %7 to double
 %9 = fadd double %8, 4.000000e-05
 %10 = fptrunc double %9 to float
 store float %10, float* %0, align 4, !tbaa !10
 %11 = load float, float* %1, align 4, !tbaa !10
 %12 = fpext float %11 to double
 %13 = fadd double %12, 2.000000e-05
 %14 = fptrunc double %13 to float
 store float %14, float* %1, align 4, !tbaa !10
 br label %15

CFG for 'update' function

%2:
 br label %codeRepl

codeRepl:
 %targetBlock = call i1 @update..split(float* %0, float* %1)
 br i1 %targetBlock, label %12, label %3

T F

%12:
12:
 %13 = phi i32 [0, %3], [2, %codeRepl]
 ret i32 %13

%3:
3:
 %4 = load float, float* %0, align 4, !tbaa !10
 %5 = fpext float %4 to double
 %6 = fadd double %5, 4.000000e-05
 %7 = fptrunc double %6 to float
 store float %7, float* %0, align 4, !tbaa !10
 %8 = load float, float* %1, align 4, !tbaa !10
 %9 = fpext float %8 to double
 %10 = fadd double %9, 2.000000e-05
 %11 = fptrunc double %10 to float
 store float %11, float* %1, align 4, !tbaa !10
 br label %12

Figure 1: Block Extraction Transformation Pass

This method is also known as Mixed Boolean-
Arithmetic expressions. The MBA expressions were
collected from [5, 11] with some variations.

The used substitutions are listed below where A is
the result B, C are the operators of the expresion and
R is a random value.

AND Substitution a = b ∧ c
a = (b⊕ ¬c) ∧ b
a = ¬(¬b ∨ ¬c) ∧ (r ∨ ¬r)
a = (¬b ∨ c)− (¬b)
XOR Substitution a = b⊕ c
a = (b⊕ r)⊕ (c⊕ r)
a = (¬b ∧ c) ∨ (b ∧ ¬c)
a = (b ∨ c)− (b ∧ c)
a = (¬b ∧ r ∨ b ∧ ¬r)⊕ (¬c ∧ r ∨ c ∧ ¬r)

OR Substitution a = b ∨ c
a = (b ∧ c) ∨ (b⊕ c)
a = (b ∧ ¬c) + c
a = [(¬b ∧ r) ∨ (b ∧ ¬r)⊕ (¬c ∧ r) ∨ (c ∧ ¬r)]∨
[¬(¬b ∨ ¬c) ∧ (r ∨ ¬r)]
Sub Substitution a = b− c
a = b+ (−c)
a = b+ r; a = a− c; a = a− r
a = b− r; a = a− c; a = a+ r
Add Substitution a = b+ c
a = b− (−c)
a = −(−b+ (−c))
a = b+ r; a = a+ c; a = a− r
a = b− r; a = a+ c; a = a+ r
a = (b ∧ c) + 2 ∗ (b⊕ c)
a = (b ∧ c) + (b ∨ c)

In addition to the Add substitution there is also a
special substitution for 8-bit integers.

a = (((b⊕ c) + 2 ∗ (b ∧ c)) ∗ 39 + 23) ∗ 151 + 111

3.3 String Obfuscation

When obfuscating strings, you can’t avoid recon-
structing the original string because at some point
you will have to work with it, for example before com-
paring it to other strings, printing it via print, etc.
Thus, string obfuscation plays an important role in
static analysis, but it can be broken by watching the
execution of the program until the transformation is
reversed and working with the original string.

This transformation pass is implemented by mak-
ing use of Mealy machines as described in Chapter
4.5.3 of [2]

Consider the string Hello for which the following
state machine was build.

3

0 1

2 3

0/H

1/E

0/L
1/0

In the binary it would be replace with the sequence
01001, when decoding the sequence into the original
string we need some information to reconstruct the
string from the state machine, for this we use two
arrays.

// transitions to nodes

int next [][2] = {

{1, 2},

{3, 2},

{2, 3}

};

// printable chars

char out [][2] = {

{’H’, ’q’},

{’t’, ’E’},

{’L’, ’O’}

};

We always start from node 0, for the transition
from that node we look at the outgoing edges and
take the next bit from the generated sequence which
is also 0. next[0][0] this yields the next node which
is 1 and the character out[0][0] which is ’H’. This is
repeated until the bit sequence is consumed.

3.4 Opaque Predicates

Most of the implemented transformation passes in
this paper rely on opaque predicates. As described
in Chapter 4.3.1 in [2] opaque predicates are simply
expressions that are either opaquely true or opaquely
false.
The predicates used as the condition shouldn’t be

to easy to break. For example this opaquely true

Figure 2: Opaque Predicates

predicate x ⊕ x == 0 is easy to break and most
decompilers (and also optimazation passes) wouldn’t
have a problem deducing the result.

Thus in the transformation pass when inserting
predicates we decided to use more numerical expres-
sions which work ∀x ∈ Z

Opaquely True predicates
(x ∧ 1 == 0) ∨ [3 ∗ (x2 + x)] mod 2 == 0
(x ∧ 1 == 1) ∨ (x2 + x) mod 2 == 0
(2x+ 2) ∗ (2x) mod 4 == 0 ∨ (x2 + x) mod 2 == 0
3 ∗ (x2 + x) mod 2 == 0 ∧ (x2 + x) mod 2 == 0
(x2 + x) mod 2 == 0 ∧ (2x+ 2)(2x) mod 4 == 0
(x+ x3) mod 2 == 0 ∧ (2x+ 2)(2x) mod 4 == 0

These predicates are then used with the combina-
tion of the substitution pass to obfuscate the Loop
conditions and add bogus control flow by splitting a
basic block at a random instruction as depicted in
Figure 3.

The transformation pass chooses at random
whether the new block has random instructions that
don’t affect the program or uses the predicate x mod
2 == 0 to clone the block such that both block gets
executed at random and in one of them obfuscate the

Figure 3: Opaque Predicates Bogus Flow

4

Figure 4: Jump To Loop

instructions by either adding random instructions or
using the substitution pass.
This transformation pass will only transform basic

blocks for which a reachable integer 2 exists.

3.5 Jump to Loop

Jump to Loop further builds upon the opaque predi-
cates by introducing a jump into a randomly chosen
basic block that is part of a Top-Level 3 Loop without
nested loops and introduces a new nested loop.
The jumped to basic block is split at a random

instruction and the newly inserted basic block filled
with bogus instructions. The transformation is de-
picted by Figure 4.

3.6 Bogus Control Flow

Another transformation pass that builds further upon
opaque predicates. Given a basic block it first ap-

2A reachable integer is an integer variable that was defined
up until the point when control flow reaches the basic block.

3Top Level Loop is the Root of the Tree of Loops nested
inside it. https://llvm.org/docs/LoopTerminology.html#

important-notes

Figure 5: Bogus Control Flow

plies the transformation described in Figure 3 it then
chooses a random block from the two split blocks con-
tinues to add bogus operations into it and proceeds
to performer the same split transformation again on
that chosen block

One of the latter split blocks will be chosen as the
loop latch and a branch to the original basic block
will be added, forming a loop from the created trans-
formations, this process is depicted in Figure 5.

3.7 Function Merging

Generally, programmers write functions to abstract
away logic of a program into a single unit that can
be looked at independently from other logic of that
program, making it easier to understand and read the
code.

Function merging, as described in Chapter 4.6.1 of
[2], is the exact opposite of that, we merge functions
into a single function and replace all occurrences of
the merged function from the program and replaced
them with the new function, this is known as abstrac-
tion breaking.

To illustrate the transformation pass consider this
program.

5

string rand_string () {

return to_string(rand ());

}

int add(int first , int second) {

return first + second;

}

int main() {

int result = add_two(1, 2);

cout << result << ’\n’;

string str = rand_string ();

cout << str << ’\n’;

}

After applying the transformation pass the pro-
gram will look as follows

void merged(int case , string *res ,

int first , int second , int* res2) {

switch (case) {

case 0:

*res = to_string(rand ());

case 1:

*res2 = first + second;

}

}

int main() {

int result;

merged(1, NULL , 1, 2, &result);

cout << result << ’\n’;

string str;

merged(0, &str , 0, 0, NULL);

cout << str << ’\n’;

}

3.8 Integer Literals Obfuscation

As with string literals, integer literals occur very fre-
quently in a binary and information can be deduced
by understanding in what context that given integer
literal is being used. Obfuscating integer literals is a

bit harder as we are working with compile-time con-
stants and thus further optimization passes after our
transformation pass could ”optimize” the obfuscation
away.

In [12] I’ve stumbled upon an idea, that the con-
stant obfuscation pass in that project is using, which
I’ve liked and thus decided to base my solution on it
as well.

The idea is that we replace the integer constant
with a multiplication of two carefully chosen values.
The first is a randomly chosen odd integer and the
second is the modular inverse of that odd integers
multiplied with the constant we want to obfuscate.

Finding the modular inverse of an odd number can
be achieved with this function, explanations can be
found in [4, 8]

uint64_t mod_inv(uint64_t x) {

uint64_t y = (3 * x) ^ 2;

y = y * (2 - y * x);

y = y * (2 - y * x);

y = y * (2 - y * x);

y = y * (2 - y * x);

return y;

}

The multiplication odd∗(mod inv(odd)∗constant)
will at runtime yield the original constant. This core
idea has been further obfuscated where the operands
of the multiplication are XORed with random opera-
tions that cancel out and yield the original operand.

The obfuscation of a constant after this transfor-
mation pass have the following structure

(A ⊕ ... ⊕ odd ⊕ ...) ∗ (B ⊕ ... ⊕ mod inv(odd) ∗
constant⊕ ...)

3.9 Branch Function Obfuscation

The idea in Chapter 4.3.5 in [2], was that uncondi-
tional branch instructions would be replaced by a call
to a ”branch function” that would overwrite the re-
turn address on the stack by computing a new return
address from values stored in an array.

The implementation of this would be a bit tricky
at the IR level in LLVM, as the assembly instructions
may not be compatible for every platform, I’ve thus
opted out and modified the implementation.

6

For every function an array will be created where
the addresses of each basic block within that function
will be stored. Then, two ”branch functions” will be
generated that calculate the return address based on
the provided argument.

int8* bf(int32 *n) {

int64 idx = map((int64)(*n));

return &T[idx];

}

int64 map(int64 n) {

// R is a random generated number

return R ^ n;

}

At the start of the function, the created arrays will
be populated by the addresses of the basic blocks
within that function.

// This is done for every

// Basic Block in that function.

K = R ^ idx;

T[map(K)] = &BlockAddress;

The value of K, will be generated by the transfor-
mation pass and will be a constant.
Then the replacement of branch instructions is

done with an indirect branch instruction that receives
the address to jump to by calling the bf() function.
The argument to that function depends on whether
the branch instruction being replaced is conditional
or not.
If it’s conditional the branch instruction

br cond ? &BlockAddress_1:

&BlockAddress_2;

Will be replaced by

K_1 = R ^ idx_1;

K_2 = R ^ idx_2;

N = cond ? K_1 : K_2;

br bf(N ^ (K_1 ^ K_2));

The XOR operations will cancel out and only the
index into the array will be left.
Unconditional branch instructions are replaced

with conditional branch instructions by using an
opaquely true predicate. The true case continue with

the original Basic block and the false case has a back
reference to the block itself forming a loop. This con-
ditional branch instruction is then modified with the
same steps as above.

At a higher abstraction the changes can be imag-
ined as

int f(int64 n) {

if (n % 2 == 0) {

return 2;

} else if (n % 3 == 0) {

return 3;

}

return 0;

}

int f(int64 n) {

T[map(R ^ 0)] = &if-part;

T[map(R ^ 1)] = &else -part;

T[map(R ^ 2)] = &endif;

T[map(R ^ 3)] = &ret;

int result;

goto bf(R ^ 0);

if-part:

if (n % 2 == 0)

result = 2;

N = cond ? (R^3) : (R^0);

goto bf(N^(R^0)^(R^3));

else -part:

else if (n % 3 == 0)

result = 3;

N = cond ? (R^3) : (R^1);

goto bf(N^(R^1)^(R^3));

endif:

result = 0;

N = cond ? (R^3) : (R^2);

goto bf(N^(R^2)^(R^3));

ret:

return result;

}

3.10 Function Call Obfuscation

Function call obfuscation works on the same princi-
ple as the branch function but instead of replacing
branch instructions call instructions are replaced.

7

The following example illustrates the transforma-
tion pass at a higher abstraction.

int add(int a, int b) {

return a + b;

}

int f(int64 n) {

int a = add(1, 2);

int b = add(3, 4);

printf("%d\n", a);

printf("%d\n", b);

return a + b;

}

int f(int64 n) {

T[map(R ^ 0)] = (int *)(& add);

T[map(R ^ 1)] = (int *)(& add);

T[map(R ^ 2)] = (int *)(& printf);

T[map(R ^ 3)] = (int *)(& printf);

// retype and call

int a =

((int (*)(int , int)))(T[map(R ^ 0)])

(1, 2);

int b =

(int (*)(int , int))(T[map(R ^ 1)])

(3, 4);

// retype and call

(int (*)(const char*, ...))

(T[map(R ^ 2])("%d\n", a)

(int (*)(const char*, ...))

(T[map(R ^ 3)])("%d\n", b)

return a + b;

}

3.11 Control Flow Flattening

This transformation pass implements two solutions
for control flow flattening. The first is based on of
Chapter 4.3.2 from [2] also described in [11], using a
switch to decide which block within the switch state-
ment should be executed next.

CFG for 'update' function

%2:
 %3 = icmp eq float* %0, null
 %4 = icmp eq float* %1, null
 %5 = select i1 %3, i1 true, i1 %4
 br i1 %5, label %15, label %6

T F

%15:
15:
 %16 = phi i32 [0, %6], [2, %2]
 ret i32 %16

%6:
6:
 %7 = load float, float* %0, align 4, !tbaa !10
 %8 = fpext float %7 to double
 %9 = fadd double %8, 4.000000e-05
 %10 = fptrunc double %9 to float
 store float %10, float* %0, align 4, !tbaa !10
 %11 = load float, float* %1, align 4, !tbaa !10
 %12 = fpext float %11 to double
 %13 = fadd double %12, 2.000000e-05
 %14 = fptrunc double %13 to float
 store float %14, float* %1, align 4, !tbaa !10
 br label %15

Figure 6: Original Function Flow

The second is purely based on indirect branching,
using aliasing to obfuscate the control flow.

The idea of control flow flattening is to destroy the
control flow of a function. Any branching, looping
or jumping is flattened to make the original control
flow hard to follow. The transformation pass is best
illustrated by looking at the transformation in Figure
7 and Figure 8 and comparing them to the orignal
flow in Figure 6.

The former version uses an lookup array from
which calculations are made to get the next block
to be executed, addition, subtraction and modulus is
used when calculating the switch case number.

The latter version uses a lookup table where ad-
dresses are stored, it calculates the index into that
lookup table to get the address to which it should

8

CFG for 'update' function

entry:
 %.reg2mem4 = alloca i32, align 4
 %.reg2mem2 = alloca i1, align 1
 %.reg2mem = alloca i1, align 1
 %lookupTable = alloca [8 x i32], align 4
 %2 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 0
 store i32 -3, i32* %2, align 4
 %3 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 1
 store i32 -2, i32* %3, align 4
 %4 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 2
 store i32 -1, i32* %4, align 4
 %5 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 3
 store i32 0, i32* %5, align 4
 %6 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 4
 store i32 1, i32* %6, align 4
 %7 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 5
 store i32 2, i32* %7, align 4
 %8 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 6
 store i32 3, i32* %8, align 4
 %9 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 7
 store i32 4, i32* %9, align 4
 %10 = icmp eq float* %0, null
 store i1 %10, i1* %.reg2mem, align 1
 %11 = icmp eq float* %1, null
 store i1 %11, i1* %.reg2mem2, align 1
 %dispatcher = alloca i32, align 4
 store i32 0, i32* %dispatcher, align 4
 br label %loopStart

loopStart:
 %dispatcher1 = load i32, i32* %dispatcher, align 4
 switch i32 %dispatcher1, label %defaultSwitchBasicBlock [
 i32 0, label %EntryBasicBlockSplit
 i32 1, label %24
 i32 2, label %38
 i32 3, label %BogusBasicBlock
]

def 0 1 2 3

defaultSwitchBasicBlock:
 br label %loopEnd

EntryBasicBlockSplit:
 %.reload = load i1, i1* %.reg2mem, align 1
 %.reload3 = load i1, i1* %.reg2mem2, align 1
 %12 = select i1 %.reload, i1 true, i1 %.reload3
 %13 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 5
 %14 = load i32, i32* %13, align 4
 %15 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 3
 %16 = load i32, i32* %15, align 4
 %17 = add i32 %14, %16
 %18 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 4
 %19 = load i32, i32* %18, align 4
 %20 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 7
 %21 = load i32, i32* %20, align 4
 %22 = srem i32 %19, %21
 %23 = select i1 %12, i32 %17, i32 %22
 store i32 %23, i32* %dispatcher, align 4
 store i32 2, i32* %.reg2mem4, align 4
 br label %loopEnd

%24:
24:
 %25 = load float, float* %0, align 4, !tbaa !10
 %26 = fpext float %25 to double
 %27 = fadd double %26, 4.000000e-05
 %28 = fptrunc double %27 to float
 store float %28, float* %0, align 4, !tbaa !10
 %29 = load float, float* %1, align 4, !tbaa !10
 %30 = fpext float %29 to double
 %31 = fadd double %30, 2.000000e-05
 %32 = fptrunc double %31 to float
 store float %32, float* %1, align 4, !tbaa !10
 %33 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 4
 %34 = load i32, i32* %33, align 4
 %35 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 2
 %36 = load i32, i32* %35, align 4
 %37 = sub i32 %34, %36
 store i32 %37, i32* %dispatcher, align 4
 store i32 0, i32* %.reg2mem4, align 4
 br label %loopEnd

%38:
38:
 %.reload5 = load i32, i32* %.reg2mem4, align 4
 ret i32 %.reload5

BogusBasicBlock:
 %39 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 0
 store i32 -1, i32* %39, align 4
 %40 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 2
 store i32 1, i32* %40, align 4
 %41 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 4
 store i32 3, i32* %41, align 4
 %42 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 6
 store i32 5, i32* %42, align 4
 %43 = getelementptr inbounds [8 x i32], [8 x i32]* %lookupTable, i32 0, i32 0
 %44 = load i32, i32* %43, align 4
 store i32 %44, i32* %dispatcher, align 4
 br label %EntryBasicBlockSplit

loopEnd:
 br label %loopStart

Figure 7: Control Flow Flattening Switch

jump next.

4 Performance Comparison

All of the described transformation passes in the pre-
vious section have been applied on a simple program
that renders a mesh to the terminal. The result of
the benchmark are shown in Figure 9.

Overall the time it took to render a single frame
was 13,13 times slower then the original program
without obfuscations. The program was executed on
an Apple M1 chip.

The program was run via lli, without any further
optimization passes, which is the LLVM IR code in-
terpreter.

The IR file was generated from compiling the C
program, available under the demo folder in the
repository with −emit− llvm flag.

CFG for 'update' function

entry:
 %.reg2mem14 = alloca i32, align 4
 %.reg2mem12 = alloca i1, align 1
 %.reg2mem10 = alloca i1, align 1
 %.reg2mem6 = alloca i8**, align 8
 %.reg2mem3 = alloca i8**, align 8
 %.reg2mem = alloca i8**, align 8
 %JumpTable = alloca i8*, i32 4, align 8
 %2 = getelementptr i8*, i8** %JumpTable, i32 0
 store i8* blockaddress(@update, %BogusBasciBlock), i8** %2, align 8
 %3 = getelementptr i8*, i8** %JumpTable, i32 1
 store i8** %3, i8*** %.reg2mem, align 8
 %.reload2 = load i8**, i8*** %.reg2mem, align 8
 store i8* blockaddress(@update, %EntryBasicBlockSplit), i8** %.reload2,
... align 8
 %4 = getelementptr i8*, i8** %JumpTable, i32 2
 store i8** %4, i8*** %.reg2mem3, align 8
 %.reload5 = load i8**, i8*** %.reg2mem3, align 8
 store i8* blockaddress(@update, %"2"), i8** %.reload5, align 8
 %5 = getelementptr i8*, i8** %JumpTable, i32 3
 store i8** %5, i8*** %.reg2mem6, align 8
 %.reload9 = load i8**, i8*** %.reg2mem6, align 8
 store i8* blockaddress(@update, %"3"), i8** %.reload9, align 8
 %6 = icmp eq float* %0, null
 store i1 %6, i1* %.reg2mem10, align 1
 %7 = icmp eq float* %1, null
 store i1 %7, i1* %.reg2mem12, align 1
 %.reload = load i8**, i8*** %.reg2mem, align 8
 %8 = load i8*, i8** %.reload, align 8
 indirectbr i8* %8, [label %BogusBasciBlock, label %EntryBasicBlockSplit,
... label %"2", label %"3"]

BogusBasciBlock:
 %9 = getelementptr i8*, i8** %JumpTable, i32 0
 store i8* blockaddress(@update, %BogusBasciBlock), i8** %9, align 8
 %10 = getelementptr i8*, i8** %JumpTable, i32 2
 store i8* blockaddress(@update, %"2"), i8** %10, align 8
 %.reload1 = load i8**, i8*** %.reg2mem, align 8
 %11 = load i8*, i8** %.reload1, align 8
 indirectbr i8* %11, [label %BogusBasciBlock, label %EntryBasicBlockSplit,
... label %"2", label %"3"]

EntryBasicBlockSplit:
 %.reload11 = load i1, i1* %.reg2mem10, align 1
 %.reload13 = load i1, i1* %.reg2mem12, align 1
 %12 = select i1 %.reload11, i1 true, i1 %.reload13
 %.reload4 = load i8**, i8*** %.reg2mem3, align 8
 %.reload8 = load i8**, i8*** %.reg2mem6, align 8
 %13 = select i1 %12, i8** %.reload8, i8** %.reload4
 %14 = load i8*, i8** %13, align 8
 store i32 2, i32* %.reg2mem14, align 4
 indirectbr i8* %14, [label %BogusBasciBlock, label %EntryBasicBlockSplit,
... label %"2", label %"3"]

"2":
 %15 = load float, float* %0, align 4, !tbaa !10
 %16 = fpext float %15 to double
 %17 = fadd double %16, 4.000000e-05
 %18 = fptrunc double %17 to float
 store float %18, float* %0, align 4, !tbaa !10
 %19 = load float, float* %1, align 4, !tbaa !10
 %20 = fpext float %19 to double
 %21 = fadd double %20, 2.000000e-05
 %22 = fptrunc double %21 to float
 store float %22, float* %1, align 4, !tbaa !10
 %.reload7 = load i8**, i8*** %.reg2mem6, align 8
 %23 = load i8*, i8** %.reload7, align 8
 store i32 0, i32* %.reg2mem14, align 4
 indirectbr i8* %23, [label %BogusBasciBlock, label %EntryBasicBlockSplit,
... label %"2", label %"3"]

"3":
 %.reload15 = load i32, i32* %.reg2mem14, align 4
 ret i32 %.reload15

Figure 8: Control Flow Flattening Aliasing

Original

Obfuscated

0,000000 0,035000 0,070000

Time/Frame

Figure 9: Benchmarks

9

5 Future work

The implemented transformation passes can be im-
proved upon, for example in the call obfuscation fur-
ther obfuscating the performed call instruction, or
in the control flow flattening pass, calculating which
switch case will be executed next could be done via
constructing a specific array, as described in Chapter
4.4.2 [2] and calculating the value at runtime instead
at compile time by inserting a function into the code.
Further transformation passes for destroying ab-

stractions such as classes, preventing debugging or
tamper-proofing can be added. The transformation
passes have been implemented to the best of my
knowledge of LLVM, it may happen at an unexpected
construct that they may break, thus making sure the
passes don’t fail on unexpected LLVM constructs,
that other frontend languages may use, and hard-
ening the passes overall.

6 Conclusion

Most of the obfuscation methods described in Chap-
ter 4 of [1] have been implemented, given that there
already exist a few open-source obfuscation imple-
mentations for LLVM, that also implement some of
the methods described in the book, effort was put
in to distinguish the implementations in this paper
from those already existing ones by implementing the
method in a different manner, such as the indirect
branching version of control flow flattening, or sim-
ply reworking the method to work differently but the
core idea would still be there as changing it would
yield a completely different transformation.

References

[1] Christian Collberg. Surreptitious Software: Ob-
fuscation, Watermarking, and Tamperproofing
for Software Protection: Obfuscation, Water-
marking, and Tamperproofing for Software Pro-
tection. Addison-Wesley, 2009, pages 19–26.
isbn: 978-0321549259.

[2] Christian Collberg. Surreptitious Software: Ob-
fuscation, Watermarking, and Tamperproof-
ing for Software Protection: Obfuscation, Wa-
termarking, and Tamperproofing for Software
Protection. Chapter 4. Addison-Wesley, 2009,
pages 297–428. isbn: 978-0321549259.

[3] Apple Obfuscation Patent. url: https :

/ / patents . google . com / patent /

US20110206285A1/en.

[4] Computing the inverse of odd integers. url:
https : / / lemire . me / blog / 2017 / 09 /

18 / computing - the - inverse - of - odd -

integers/.

[5] Defeating MBA-based Obfuscation. url:
https : / / hal . science / hal - 01388109 /

document.

[6] Hikari. url: https : / / github . com /

HikariObfuscator/Hikari.

[7] Hikari. url: https://github.com/61bcdefg/
Hikari-LLVM15.

[8] Integer multiplicative inverse via Newton’s
method. url: https://marc- b- reynolds.
github.io/math/2017/09/18/ModInverse.

html#mjx-eqn%3Arr.

[9] LLVM Backend. url: https : / / llvm .

org / docs / WritingAnLLVMBackend . html #

introduction.

[10] Microsoft Watermarking Patent. url: https:
/ / patents . google . com / patent /

US20110314550A1/en.

[11] OLLVM. url: https://crypto.junod.info/
spro15.pdf.

[12] YANSOllvm. url: https : / / github . com /

emc2314/YANSOllvm.

10

